Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PVD grown SnS thin films onto different substrate surfaces

Identifieur interne : 000759 ( Main/Repository ); précédent : 000758; suivant : 000760

PVD grown SnS thin films onto different substrate surfaces

Auteurs : RBID : Pascal:14-0024570

Descripteurs français

English descriptors

Abstract

Recent interests focus on tin mono sulphide as a potential candidate for an absorber layer in heterojunction solar cells. In the present investigation, SnS thin films have been deposited onto different substrates such as glass, ITO and Mo-coated glass substrate by thermal evaporation method. The compositional, microstructural and photo-electrochemical properties of the SnS films were analyzed depending upon the chemical nature of the substrates used. The SnS layers were polycrystalline with Herzbergite orthorhombic structure on all three substrates and had nearly stoichiometric elemental composition with a Sn/S ratio of ˜1.01. The films grown on ITO and Mo-coated glass substrates exhibit (040) as preferred orientation whereas the films deposited on glass showed (111) plane as predominant. The layers were densely packed and well adherent to the substrate surface. The Raman spectra showed bands at 64, 163, 189 and 219 cm-1, which corresponds to the single phase (SnS) composition of films. p-type conductivity of all the deposited films were determined by the photoresponse studies. The highest photoresponse for the films on the ITO substrate indicates their appropriateness for the solar cell application.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0024570

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">PVD grown SnS thin films onto different substrate surfaces</title>
<author>
<name sortKey="Revathi, N" uniqKey="Revathi N">N. Revathi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bereznev, S" uniqKey="Bereznev S">S. Bereznev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iljina, J" uniqKey="Iljina J">J. Iljina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Safonova, M" uniqKey="Safonova M">M. Safonova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellikov, E" uniqKey="Mellikov E">E. Mellikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Volobujeva, O" uniqKey="Volobujeva O">O. Volobujeva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0024570</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0024570 INIST</idno>
<idno type="RBID">Pascal:14-0024570</idno>
<idno type="wicri:Area/Main/Corpus">000288</idno>
<idno type="wicri:Area/Main/Repository">000759</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4522</idno>
<title level="j" type="abbreviated">J. mater. sci., Mater. electron.</title>
<title level="j" type="main">Journal of materials science. Materials in electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Absorber</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Doped materials</term>
<term>Glass</term>
<term>Heterojunction</term>
<term>Heterostructures</term>
<term>Indium oxide</term>
<term>Microelectronic fabrication</term>
<term>Microstructure</term>
<term>Molybdenum</term>
<term>Orthorhombic lattices</term>
<term>P type conductivity</term>
<term>Phase composition</term>
<term>Photoelectrochemical effect</term>
<term>Physical vapor deposition</term>
<term>Polycrystal</term>
<term>Preferred orientation</term>
<term>Raman spectrum</term>
<term>Solar cell</term>
<term>Stoichiometry</term>
<term>Thermal method</term>
<term>Thin film</term>
<term>Tin addition</term>
<term>Tin sulfide</term>
<term>Vacuum deposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt physique phase vapeur</term>
<term>Absorbeur</term>
<term>Matériau absorbant</term>
<term>Hétérojonction</term>
<term>Cellule solaire</term>
<term>Addition étain</term>
<term>Revêtement</term>
<term>Méthode thermique</term>
<term>Dépôt sous vide</term>
<term>Microstructure</term>
<term>Effet photoélectrochimique</term>
<term>Polycristal</term>
<term>Stoechiométrie</term>
<term>Orientation préférentielle</term>
<term>Spectre Raman</term>
<term>Composition phase</term>
<term>Conductivité type p</term>
<term>Sulfure d'étain</term>
<term>Couche mince</term>
<term>Hétérostructure</term>
<term>Verre</term>
<term>Oxyde d'indium</term>
<term>Molybdène</term>
<term>Matériau revêtu</term>
<term>Réseau orthorhombique</term>
<term>Fabrication microélectronique</term>
<term>Matériau dopé</term>
<term>8115C</term>
<term>8460J</term>
<term>8105K</term>
<term>6865</term>
<term>SnS</term>
<term>ITO</term>
<term>7830N</term>
<term>8540H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Molybdène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent interests focus on tin mono sulphide as a potential candidate for an absorber layer in heterojunction solar cells. In the present investigation, SnS thin films have been deposited onto different substrates such as glass, ITO and Mo-coated glass substrate by thermal evaporation method. The compositional, microstructural and photo-electrochemical properties of the SnS films were analyzed depending upon the chemical nature of the substrates used. The SnS layers were polycrystalline with Herzbergite orthorhombic structure on all three substrates and had nearly stoichiometric elemental composition with a Sn/S ratio of ˜1.01. The films grown on ITO and Mo-coated glass substrates exhibit (040) as preferred orientation whereas the films deposited on glass showed (111) plane as predominant. The layers were densely packed and well adherent to the substrate surface. The Raman spectra showed bands at 64, 163, 189 and 219 cm
<sup>-1</sup>
, which corresponds to the single phase (SnS) composition of films. p-type conductivity of all the deposited films were determined by the photoresponse studies. The highest photoresponse for the films on the ITO substrate indicates their appropriateness for the solar cell application.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4522</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. electron.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>PVD grown SnS thin films onto different substrate surfaces</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>REVATHI (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BEREZNEV (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ILJINA (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAFONOVA (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MELLIKOV (E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VOLOBUJEVA (O.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science. Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>4739-4744</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22352</s2>
<s5>354000501621230110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0024570</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Recent interests focus on tin mono sulphide as a potential candidate for an absorber layer in heterojunction solar cells. In the present investigation, SnS thin films have been deposited onto different substrates such as glass, ITO and Mo-coated glass substrate by thermal evaporation method. The compositional, microstructural and photo-electrochemical properties of the SnS films were analyzed depending upon the chemical nature of the substrates used. The SnS layers were polycrystalline with Herzbergite orthorhombic structure on all three substrates and had nearly stoichiometric elemental composition with a Sn/S ratio of ˜1.01. The films grown on ITO and Mo-coated glass substrates exhibit (040) as preferred orientation whereas the films deposited on glass showed (111) plane as predominant. The layers were densely packed and well adherent to the substrate surface. The Raman spectra showed bands at 64, 163, 189 and 219 cm
<sup>-1</sup>
, which corresponds to the single phase (SnS) composition of films. p-type conductivity of all the deposited films were determined by the photoresponse studies. The highest photoresponse for the films on the ITO substrate indicates their appropriateness for the solar cell application.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Deposición física fase vapor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Absorbeur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Absorber</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Absorbente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thermal method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método térmico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Vacuum deposition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Depósito bajo vacío</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Effet photoélectrochimique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photoelectrochemical effect</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Efecto fotoelectroquímico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stoechiométrie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stoichiometry</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estequiométría</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Orientation préférentielle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Preferred orientation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Orientación preferencial</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Spectre Raman</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Raman spectrum</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Espectro Raman</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composition phase</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Phase composition</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Composición fase</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Conductivité type p</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>P type conductivity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Conductividad tipo p</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure d'étain</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Tin sulfide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estaño sulfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Verre</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Glass</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Réseau orthorhombique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Orthorhombic lattices</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>47</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>8105K</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>SnS</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>7830N</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé IV-VI</s0>
<s5>18</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>IV-VI compound</s0>
<s5>18</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto IV-VI</s0>
<s5>18</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>19</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>19</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>19</s5>
</fC07>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000759 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000759 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0024570
   |texte=   PVD grown SnS thin films onto different substrate surfaces
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024